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Abstract. The physical meaning of second-order phase transitions discovered by Davies in 
black-hole thermodynamics is discussed. It is argued that the phenomenon has nothing to 
do with phase transitions occurring in rotating self-gravitating fluids in Newtonian theory. 
We show that the internal state of a black hole remains unaffected after the phase transition. 
We also argue that the change of sign and infinite discontinuity in the heat capacity are of 
purely geometric origin, i.e. are determined by the embedding of an event horizon into a 
black-hole space-time. This result supports the view that temperature cannot be used as a 
well-behaved fundamental parameter in black-hole physics. 

1. Introduction 

The very remarkable discovery of thermal emission of elementary particles by 
Schwarzschild black holes has initiated deeper investigations of thermodynamic pro- 
perties of stationary rotating and charged (i.e. Kerr-Newman) black holes. Those 
investigations involved conditions for stable equilibrium of non-rotating black holes 
with a thermal radiation bath (Hawking 1976, Davies 1977, Hut 1977, Gibbons and 
Perry 1978, see also review articles by Sciama 1976 and Davies 1978), the fluctuation- 
dissipation theorem in irreversible thermodynamics (Candelas and Sciama 1977), the 
black-hole version for the third law of thermodynamics and various specific heats of 
black holes held in equilibrium (Davies 1977, Hut 1977). It has turned out that the 
black-hole thermodynamics differs from the theory of normal thermodynamics in a 
number of details: apart from the unsolved problem of a proper definition of stable 
equilibrium for Kerr holes (difficulties have arisen with the rotating thermal bath), 
Hawking (1976) has shown that black holes cannot be described by means of a 
canonical ensemble (this is closely related to the fact that the black-hole entropy is a 
global property of the hole, since it cannot be divided up into a number of weakly 
interacting parts). Davies has found that the Nernst theorem is not fully satisfied for 
black holes-the entropy has a finite positive limit as the temperature approaches zero. 
Davies (1977) has also studied’black-hole specific heats and has derived a formula for 
the thermal capacity CJ,a with angular momentum J and charge Q held constant: 

for a generic Kerr-Newman black hole with mass M held in equilibrium (assuming that 
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equilibrium is possible at all for rotating holes immersed in a radiation field). The 
formula (1) differs slightly from that given in Davies (1977), for we use units with 
h = c = G = 1 and k = 1 rather than k = 1/8.n. One sees immediately that C,,Q varies 
from the negative value - 8 r M 2  for a Schwarzschild black hole to zero for the extreme 
Kerr-Newman hole ( T  + 0), but it approaches zero through positive values. It means 
that for certain values of J and Q the denominator in (1) vanishes. In other words, at 
this critical point C , ,  suffers an infinite discontinuity, after which it changes sign from 
negative to positive. Putting J 2  = aM4 and Q2 = pM2,  Davies has obtained an equation 
for a and p at the critical point: 

a2+6a i -48  - 3  -0. 

Introducing for a black hole with angular velocity (1 and electric potential 4 at its 
horizon the Gibbs free energy G := M - TS -- s1J - 4Q one sees tht it is continuous 
everywhere and has continuous first derivatives with respect to T, s1 and 4. Second 
derivatives of G, however, are in general discontinuous at the critical point (which is in 
fact a line rather than a point on the (a ,p )  plane). There is, therefore, a formal 
similarity of this phenomenon to a second-order hase transition in ordinary ther- 

at p = t for the Reissner-Nordstrom case (J = 0). Above the critical point, after the 
phase transition, the heat capacity becomes positive and it would be easier for a black 
hole to attain equilibrium with a surrounding radiation thermal bath. 

The physical significance of the phase transition, however, has remained unclear. 
The concept of a phase transition has been introduced into black-hole physics by 
Gibbons and Perry (1978), who have shown that in an isolated box containing a thermal 
radiation field at high enough energy densities a black hole would condense out. This 
black-hole condensation is qualitatively very similar to a process of liquid drop 
condensation out of a saturated vapour. One has therefore a first-order phase tran- 
sition in black-hole physics and this process has clear physical meaning. Second-order 
phase transitions for ordinary physical systems, however, involve much more subtle 
processes whose physical interpretation requires a sophisticated analysis in each 
separate case. One can be sure that the phrase ‘second-order phase transition for black 
holes’ is merely the name of a physically rather obscure phenomenon and not a 
description of its essential features. Furthermore, a deeper thermodynamic investiga- 
tion of the phenomenon is strongly hindered since an underlying statistical-mechanical 
theory that would describe black hole processes is lacking. By applying a 
phenomenological approach based on thermodynamic interpretation of the four laws of 
the black-hole mechanics (i.e. entropy S a  area of event horizon A,  temperature T a 
surface gravity 2) one would not gain much insight into the physical content of the 
problem. 

Davies (1977,1978) has suggested that for a Kerr black hole the phenomenon under 
consideration may be a relativistic black-hole counterpart of a phenomenon which is 
known for a non-relativistic rotating self-gravitating fluid (Bertin and Radicati 1976). 
Such a fluid loses its axial symmetry and becomes unstable when the ratio of its 
rotational energy to its Newtonian gravitational energy exceeds some critical value 
(about 0.14). The change has the form of a thermodynamic second-order phase 
transition and in the higher angular-momentum phase the fluid forms a triaxial 
ellipsoid. Davies’ suggestion was therefore: ’This suggests the possibility that in a 
similar fashion the Kerr black hole becomes unstable at a ’’* =r 0.68, and enters a 

modynamics. The phase transition occurs at (Y = 2 P 3 - 3 for the Kerr case (Q = 0) and 
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non-axisymmetric dynamic phase in which new thermodynamic degrees of freedom 
appear (Davies 1977). 

In this paper we present a view that the black-hole transitions ought to be explained 
in a quite different way, without relating them to phase transitions in rotating fluids. 
First, in our opinion, it is not quite clear what the 'unstable dynamic phase' would in fact 
mean. It is known that Kerr metrics are stable against small perturbations and one can 
believe with fairly good confidence that at the critical point there would be no 
bifurcation and no new classes of solutions of Einstein's field equations would appear. 
The second, much stronger argument is that the same phase transition occurs for 
non-rotating, charged black holes and this process has no counterpart for non- 
relativistic charged bodies. A spherically-symmetric static body can in principle be 
charged to arbitrarily high values (at least above the black hole limit Q 2  = M 2  which is 
greatly exceeded in nuclear matter) and no second-order phase transition appears. This 
means that physical processes occurring in material bodies which are sources of 
gravitational fields representing the asymptotic non-relativistic limits of the Kerr- 
Newman fields cannot yield much insight into physical processes occurring in black 
holes themselves. The black-hole phase transition has been discovered by ther- 
modynamic considerations, but taking into account that all the thermodynamic quan- 
tities are of geometric origin, one ought to seek a geometric interpretation of the 
transition. We show that the geometry of the black hole does not suffer any qualitative 
change at the critical point, which in turn suggests that there are also no significant 
changes in physical properties of it. Assuming that the phase transition has a purely 
geometric origin we begin with a discussion of the intrinsic geometry of an event 
horizon. Consider first the intrinsic geometry of a two-dimensional cross-section of the 
horizon (i.e. of the surface of a black hole). This problem has been studied in detail by 
Smarr (1973) who has proven that the metric (2)ds2 of the two-slice and hence its 
geometry are uniquely determined by two parameters: 

and ps :Ta(r: +a2)-ll2, (2) 
2 1/2 77 :=(r: + a  ) 

where as usual r+ := M + ( M 2  - a2 - Q 2 )  1 /2  gives the location of the event horizon, and 
a : = J /M,  instead of three parameters determining the entire four-geometry. For 
non-rotating black holes (a  = ps = 0) the two-slice is isometric to a sphere with radius 
77 = r+ .  Thus the geometry of the black-hole surface singles out no value of Q and, in 
particular, having given a value 7 of the radius one cannot decide whether one measures 
the geometry of the two-slice for a Schwarzschild hole with mass $7 or for a charged 
black hole with mass $77 at the critical value of its charge. The geometry of the surface of 
a charged hole is unaffected by the phase transition. The same conclusion should also 
hold for rotating black holes, since according to our assumption the phase transitions 
are due to a common geometric origin. In the Kerr case, however, the situation is 
slightly more complicated, for the surface of a rotating hole is merely homeomorphic to 
a sphere. Calculations by Smarr (1973) have revealed t h g  the Gaussian curvature 
becomes negative near the poles of the spheroid for J >3J3  M 2 .  Detailed investiga- 
tions by Press have shown that the Kerr solutions remain stable there. Note also that 
the value of J is irrelevant for the phase transition. 

Now one can ask whether the phase transition affects the three-geometry of the 
entire event horizon. To show that it is not so we apply an approach due to Smarr 
(1973). As the event horizon is also a Killing horizon we choose such coordinates 
t, x l ,  x2,  x 3  that a Killing vector tangent to null generators of H has the form K = a / d t .  
This restriction is invariant under transformations XI + f ' ( x k )  where i, k = 1 ,2 ,3 .  By 
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using one of these transformations the equation for H can be made x1 = 0. Take 
t, x2, x3 as coordinates on H, then considering that K is null on H and orthogonal to H, 
it follows that the induced line element on the horizon is given by 

(3)ds2 = gAB dxAdxB (A,  B = 2 ,3 )  (3) 
Here gAB depends on x2  and x3 only, since a l a r  is the Killing vector and x1 = 0 on H 
The surface of a black hole is given by t = F ( x 2 ,  x3) for an appropriate choice of the 
function F. One sees that regardless of the form of F, the line elements for the surface of 
the hole and for the event horizon are identical. The metric on H is, of course, 
degenerate but it still determines all principal intrinsic geometric properties of the 
horizon. Once again one cannot determine from the metric tensor the exact values of 
the mass and charge. We can therefore summarise: the intrinsic metric geometry of the 
event horizon remains completely unaffected by the phase transition. 

The definition of C , ,  involves two quantities which are to be determined on the 
event horizon, the area of the black hole surface A and the surface gravity E, the latter 
being an extrinsic quantity for the event horizon geometry. In fact one cannot 
determine the value of 2 from the formula (3) for (3)dS2 but one needs to know the 
entire four-metric near H, that is one needs a ‘rigging’ vector for H (Bardeen et a1 
1973). We arrive at a conclusion: the phase transition is due to the geometry of the 
space-time in the neighbourhood of the horizon, i.e. to the way in which the horizon is 
embedded into the space-time. 

Fortunately we need not study the full line element for the Kerr-Newman black 
holes but what is in fact needed is to investigate the relation between the surface area of 
a black hole and its surface gravity. This will be done in detail in the next section. 

2. The relation between the black-hole temperature and entropy 

One of the fundamental aspects of black-hole thermodynamics is the existence of the 
explicit fundamental relation for the Kerr-Newman family between the energy, 
entropy, angular momentum and charge: 

M = [(S/4x) + ( T / S ) ( J ~ + $ Q ~ ) + $ Q ~ ] ~ ’ ~ .  (4) 

The definition of the black hole temperature is based on the first law of black-hole 
thermodynamics and on the quantum Hawking effect: 

T:= ( a M / a s ) , , =  (8qM)-’[1 - ( 4 ~ 2 / ~ 2 ) ( ~ 2 + i ~ 4 ) I .  ( 5 )  

By substituting (4) into ( 5 )  we obtain T JS a function of S,  J and Q: 

T = (8x)-’[(S/4x) -/- (7r/S)(J2+$Q4) +4Q2]-1’2. [l - (4x2/S2)(J2+$Q4)]. (6) 

For ordinary thermodynamic systems temperature is one of the most fundamental 
macroscopic parameters and all thermodynamic functions are expressed in terms of it. 
In particular, in most applications, when entropy is considered it is used in the form of a 
function of T, S (  T ) .  In black-hole thermodynamics, however, one obtains from the 
basic principles of the theory the temperature as a function of entropy and the 
‘extensive’ parameters J and Q in the form (6). To invert this equation to obtain 
S (  T, J,  Q) one would have to solve an algebraic equation of the fifth order in S,  which 
turns out to be impossible. 
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To calculate the heat capacity C,Q one does not need to know the explicit form of 
the function S ( T ) .  Equation (6) may be transformed into an equation of the form 
F (  T, S )  = 0. By the implicit function theorem, the unique solution S (  T )  of the equation 
exists in a neighbourhood of a point (T,  S )  and is differentiable iff the derivative 
aF/aS # 0 at this point. This is how CJ,Q has been calculated. The critical point at which 
the phase transition occurs is that at which the theorem is no longer valid, since 
aF/aS = 0. At this point the equation F(T ,  S )  = 0 does not possess a unique local 
solution with respect to S ,  and the concept of the heat capacity calculated by means of it 
loses its validity. This suggests that it would not be plausible to view the infinite 
discontinuity in C , ,  as a real second-order phase transition, basing the entire argument 
merely on the fact that S and T remain finite and continuous there. To understand 
better the physical meaning of the occurence of the infinite discontinuity in Cj,Q apart 
from the mathematical one mentioned above, we study the equation (6) in more detail. 
We are interested in processes in which J and Q are held constant and mass is variable, 
therefore we begin with an extreme Kerr-Newman black hole of charge Q and angular 
momentum J. Its mass is 

(7) 4 1 / 2  M , = : Q ~ + ( J ~ + ~ $ Q  ) . 
We shall keep Me constant throughout the paper, fixed at some value; the equation (7) 
determines a two-surface in the (M,  J,  Q) space of black-hole states. For the given 
value of Me, J and Q may vary in some intervals; each value of Q corresponds to a 
straight line, parallel to the M axis, representing a family of black holes with the same J 
and Q. 

For each family of black holes the smallest hole is the extreme one, i.e. with mass Me. 
Then a hole mass is increased by allowing energy inflow through the horizon, but 
without changing the angular momentum and charge. We can use ( S ,  J, Q) instead of 
(M, J,  Q) as independent parameters since S is a monotonically increasing function of 
M. Introducing dimensionless parameters 

(8) 

we replace the relation (6) by 

e = U - 3 / 2 .  [ a2 - ( i -~ )2 ] [U2f2qa+( i -q )2 ] -1 /2  (9)  
Here the charge parameter q varies from 0 to 0.5 and the entropy parameter U is 
greater than 1 - q to yield a positive value of 8. Thus all black holes are characterised by 
three independent parameters Me, q and U. The function @(U) grows from zero for 
U = 1 - q and for very large values of mass vanishes as U-’’’ ; it therefore has a 
maximum for a value u0(q) which may be determined from the condition for an 
extremum : 

(10) 
4 

U - ~ ( l -  4)’~’  - 8(1- q)’qU - 3(1 -q)4= 0.  

It may be shown analytically that this equation has exactly one root u0 greater than 

At the point of maximal temperature a black hole has a mass Mo(q) which is 

(11) 
The point of maximal temperature is certainly the critical point where the phase 

1-4. 

uniquely determined by Me and q : 

(M0/Mey = (2cnJ1 [(a0 + q)* + 1 - 2ql. 
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transition occurs, since dT/dS = 0 there. The relation between J and Q and the mass 
MO at the critical point may be expressed by means of the dimensionless parameters a 
and p :  

J 2  =: aM:, Q’=:PM, 2 

then 

= (1-Q) (M0/MJ4,  P = 2q (M0/MJ2. (12) 
The results of computer calculations are given in figures 1 and 2 .  Figure 1. presents the 
function e((+) for different values of 4. One sees that the sign of CJ,o, as determined by 
the derivative dO/da, is positive for U < ( P O  and negative above. This behaviour of C , ,  
together with its infinite discontinuity is due to the double-valuedness of the (T, J, Q) 
coordinates-for each set (T,  J ,  Q) there exist two values of S,  M and other ther- 
modynamic quantities. It is obvious that the black-hole temperature cannot be used as 
a fundamental parameter of the system; on the contrary, it should be viewed as a 
function of the basic parameters (Ad, J, 0). 

The simplest resolution of the problem of the black-hole phase transition would 
therefore be that the phenomenon is due merely to the fact that the temperature is not a 
monotonic function of the entropy. In other words, the dynamics of the gravitational 
field via the Einstein equations establishes the geometry of a stationary, vacuum (except 
for the electromagnetic field) black hole in the form of Kerr-Newman metrics, and 
given the metric one can calculate all quantities describing a hole. The dependence of 
the surface gravity 2 on S,  J and Q is then the result of a direct calculation, needing no 
comparison with rotating or charged material bodies. This answer may, however, seem 
unsatisfactory, as one might argue that a full elucidation of the problem should involve 

Figure 1, The function of T(S)  in dimensionless units is drawn for four values of Q. For 
each value of (T, J, 0) there are two values of S and M. At the points of maximal 
temperature C,,o suffers an infinite discontinuity and changes its sign. Dependence of the 
temperature on the black-hole mass, T ( M )  has qualitatively the same character. 
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Figure 2. The values of J 2  and Q2 (again in dimensionless units) are shown at the critical 
points where the phase transitions occur. 

the physical meaning of behaviour of 2t for varying masses-why the temperature 
vanishes for an extreme black hole and in the limit of infinite mass. The latter problem 
cannot be solved within the Kerr-Newman family of solutions-in this case the explicit 
form of the metric determines T. On the contrary, one should consider a generic 
stationary black hole surrounded by arbitrary matter and study its thermal properties. 
This is however very difficult since a generic black hole is described by an unknown 
number of parameters. We are therefore left with merely heuristic arguments, stating 
in the case of a Kerr black hole that a reduction of the surface gravity in the process of 
increasing angular momentum, while keeping the mass constant, is due to an increment 
of the centrifugal force. 

In our opinion, Davies’ second-order phase transition for black holes may be 
explained by studying the manner in which an event horizon is embedded into the 
Kerr-Newman space-time, and in this sense the phenomenon is said to be of purely 
geometric origin. However, a full elucidation of the problem is still missing. Qualita- 
tively the black-hole temperature-dependence on mass is the same as in figure 1. As far 
as we know there are no physical systems, real or theoretical, for which temperature 
depends on internal energy in this way. Ordinary thermodynamics therefore gives no 
analogues €or black-hole physics and it seems that black holes are unique systems 
possessing maximal temperature and positive and negative specific heats. 

S o z e  of our conclusions are in part implicitly contained in Hut’s paper (1977): ‘At 
Q = 543 M the heat capacity has an infinite discontinuity. Although this does not affect 
the internal state of the system as in the czse of a phase transition, it is physically 
important: it indicates a transition from a region where only a microcanonical ensemble 
is appropriate to a region where a canonical ensemble can also be used to describe the 
system’. The last part of the statement seems to be rather doubtful, as positiveness of 
the heat capacity is merely a necessary but not a sufficient condition for a canonical 
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ensemble to exist. Given the statistical weight (i.e. the density of energy states) for a 
system one can construct a canonical ensemble for it, provided that the integral 
representing the partition function is convergent. As Hawking (1976) has shown, the 
partition-function integral for black holes diverges exponentially. His proof holds in 
the negative specific heat region as well as in the positive one, since in both cases the 
partition function diverges approximately as exp(M2). Thus black holes can be 
described only by means of a microcanonical ensemble. 

Acknowledgments 

We are very grateful to Professors M Demiariski and A Staruszkiewicz for very helpful 
discussions and encouragement. We should also like to thank Dr J Karczmarczuk for 
performing the computer calculations. 

References 

Bardeen J, Carter B and Hawking S W 1973 Commun. Math. Phys. 31 161 
Bertin G and Radicati L 1976 J. Asfrophys. 206 815 
Candelas P and Sciama D W 1977 Phys. Rev. Lett. 38 1372 
Davies P C W 1977 Proc. R. Soc. A353 499 
- 1978 Rep. Prog. Phys. 41 1313 
Gibbons G W and Perry M J 1978 Proc. R. Soc. A358 467 
Hawking S W 1976 Phys. Rev. D13 191 
Hut P 1977 Mon. Not. R. Astr. Soc. 180 379 
Sciama D W 1976 Vistas Asrr. 19 385 
Smarr L 1973 Phys. Rev. D7 289 


